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Abstract
The validity of the Fourier law of heat conduction is examined for the harmonic
Fibonacci chain, which has a singular continuous frequency spectrum and
critical eigenstates. It is shown that the heat current J depends on the system
size N as J ∼ (ln N)−1 and the local temperature strongly oscillates along the
chain. These results indicate that the Fourier law does not hold on the harmonic
Fibonacci chain. Furthermore, it is shown that the local temperature exhibits
two different distributions according to the generation number of the Fibonacci
chain, i.e., the local temperature distribution does not have a definite form in the
thermodynamic limit. The relations between the N-dependence of J and the
frequency spectrum, and between the local temperature and critical eigenstates
are discussed.

Many studies in recent decades have shown that arbitrarily defined one-dimensional (1D)
systems of interacting particles do not exhibit normal thermal transport properties, i.e., the
Fourier law does not hold for such systems [1–6]. For the steady state of the homogeneous 1D
chain of system size N , the Fourier law, J = −κ ∇T with thermal conductivity κ , indicates that
the heat current depends on the system size as J ∼ 1/N and that the temperature gradient ∇T
is constant along the chain. Rieder et al [1] have shown for a 1D chain of equal-mass particles
interacting with identical harmonic potentials that the heat current is independent of the system
size. They also have obtained the local temperature distribution. The local temperature behaves
in an unphysical way: the temperature takes a constant value in the bulk. Furthermore, near
the end of the chain, the temperature decreases as we move in the direction of the hotter heat
bath, and rises only at the end particle in contact with the heat bath; the temperature exhibits
corresponding behaviour at the other end of the chain. Casher and Lebowitz [2] have shown for
the same model but with random mass distribution that J ∼ N−3/2. For the same random-mass-
distribution model but with different types of heat bath, Rubin and Greer [3] have obtained the
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result J ∼ N−1/2. These system size dependences of J for periodic or disordered chains may
be attributed to the localization property of eigenstates on these chains. Since the eigenstates
are extended in periodic chains, the ballistic energy transport of extended eigenstates results
in a constant heat current of the periodic chains. In contrast, for the disordered chains, the
decrease in the heat current with increasing system size is caused by the localized eigenstates,
which cannot transport energy over the length of the system. The extended and localized
eigenstates correspond to continuous and pure-point spectra, respectively. It is shown that, for
the Casher and Lebowitz type of chain and heat bath, the thermal conductivity κ diverges as
the system size increases if the spectrum contains an absolutely continuous part [2].

Some quasiperiodic systems have a Cantor-set-like spectrum, i.e., a singular continuous
spectrum [7–11]. In such systems, there are eigenstates which are neither localized nor
exponentially localized. For example, the Fibonacci chain, which is a 1D harmonic chain
in which the spring constants and/or mass of particles are arranged according to the Fibonacci
sequence, has a singular continuous spectrum [7–10]. In the Fibonacci chain, the low-
frequency eigenstates are extended but the medium- and high-frequency eigenstates show
power law decay (such eigenstates with power law decay are called critical states [11]). We
may thus expect such quasiperiodic systems to show exotic heat transport properties compared
with periodic or disordered systems.

In the present letter we investigate the anomalies of heat transport phenomena on harmonic
Fibonacci chains. We focus on the anomaly resulting from the spectral properties of the
Fibonacci chain. In order to check the validity of the Fourier law on the Fibonacci chain, we
investigate the system size dependence of the heat current J . Although Maciá [12] has already
studied the thermal conductivity κ of the harmonic Fibonacci chain, he has not checked the
system size dependence of κ and thus the validity of the Fourier law is not clear yet. Our results
show that the heat current behaves as J ∼ (ln N)−1, which is in contrast with the behaviour
for periodic or disordered chains. We discuss the fact that the total bandwidth of the phonon
spectrum of the Fibonacci chain has similar N-dependence to J . We also calculate the local
temperature distribution on the Fibonacci chain; it seems not to converge to a definite form even
in the thermodynamic limit. We relate {Ti} to the critical eigenstates of the Fibonacci chain.

The harmonic Fibonacci chain which we consider is a 1D chain of N particles; each
particle interacts with its neighbouring particles with equal spring constant k. We construct
the sequence of masses of particles {mi |i = 1, . . . , N; mi = mα or mβ} according to the
Fibonacci sequence. The Fibonacci sequence of the nth generation Ln , which consists of two
kinds of component mα and mβ , is constructed using the recursion relation Ln = Ln−1 Ln−2,
with L0 = mβ and L1 = mα . Then the system size of the nth-generation Fibonacci sequence
is the Fibonacci number Fn , which obeys the recursion relation Fn = Fn−1 + Fn−2, with F0 = 1
and F1 = 1. The Fibonacci number Fn behaves asymptotically as Fn ∼ τ n (with the golden
ratio τ = (

√
5 + 1)/2). We can obtain the asymptotic properties of the Fibonacci chain in

the limit of N → ∞ by considering the infinite-generation limit n → ∞. We set both the
spring constant k and the mass mβ to unity; we calculate the heat current and the temperature
distribution varying the mass mα .

We consider the following Langevin equations for particles of the chain with stochastic
heat baths at both ends:

m1 ẍ1 = −2x1 + x2 − γ ẋ1 + ηL(t),

mi ẍi = −2xi + xi−1 + xi+1,

m N ẍN = −2xN + xN−1 − γ ẋN + ηR(t),

(1)

where xi are the displacements of the particles from their equilibrium positions; γ is the friction
constant; ηL and ηR are the random forces caused from left and right heat baths, respectively.
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We choose as the random forces white noises (Casher–Lebowitz-type heat bath [2, 4]), i.e.,
the Fourier transforms of the random force obey

〈ηL(ω)ηL(ω′)〉 = 4πγ TLδ(ω + ω′),
〈ηR(ω)ηR(ω′)〉 = 4πγ TRδ(ω + ω′),

(2)

where angular brackets indicate averages over the random force; TL and TR are the temperatures
of the left and right heat baths, respectively.

We define the energy current Ji from site i to site i + 1 as

Ji = 1
2 〈(ẋi+1 + ẋi)(xi+1 − xi)〉. (3)

We choose the definition of {Ji} to satisfy the equation of continuity for the local energies ei :
ėi = −Ji + Ji−1, where we have defined the local energy of the i th site as

ei = 〈 1
2 mi ẋi

2 + 1
2 ui 〉, (4)

with the local potential energy of the i th site ui = (xi − xi−1)
2/2+(xi+1 − xi)

2/2. In the steady
state, the energy current does not depend on the site; then from the Langevin equation (1),

J = 
T
∫ ∞

0

dω

π

2γ 2ω2

|det Y |2 , (5)

where 
T = TL−TR and Y = �−ω2M +iω� with �i j = −δi, j−1 +2δi j −δi, j+1, Mi j = miδi j ,
and �i j = γ (δi,1 + δi,N )δi, j . We may write

det Y = D1,N − γ 2ω2 D2,N−1 + iγω(D2,N + D1,N−1), (6)

where Di, j denotes the determinant of the sub-matrix of � − ω2 M which begins with i th row
and column and ends with j th row and column [4].

We define the local temperature at site i :

Ti =
〈

pi
∂ H

∂pi

〉
=

〈
pi

2

mi

〉
, (7)

where H is the Hamiltonian of the system. We note that the equipartition relation Ti =
〈xi ∂ H/∂xi〉 holds for any mass distribution (for the periodic case, the equipartition relation
was proven in [1]). For our model we can write the explicit form of the local temperature as

Ti = TL − miγ 
T
∫ ∞

−∞
dω

π
ω2

∣∣∣∣ D1,i−1 + iγωD2,i−1

det Y

∣∣∣∣
2

. (8)

In calculating the heat current, it is convenient to express the determinant Di, j in terms of
a transfer matrix as(

Di, j −Di+1, j

Di, j−1 −Di+1, j−1

)
= M j M j−1 · · · Mi+1 Mi , (9)

where the matrix Mi (ω) is the unimodular transfer matrix of site i defined as

Mi (ω) =
(

2 − miω
2 −1

1 0

)
. (10)

If we rewrite the total transfer matrices of the nth-generation Fibonacci chains as Mn =
MN MN−1 · · · M1 with N = Fn , then the Mn obey a recursion relation:

Mn = Mn−2Mn−1, where M0 =
(

2 − mβω2 −1
1 0

)
and M1 = M1. (11)

Since we can obtain all the determinants Di, j needed in (6) by calculating Mn , the recursion
relation (11) saves a lot of time in calculating J .
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Figure 1. A log–log plot of the generation number n versus the heat current J (circles) and the
total bandwidth Wn (diamonds). Curves are included to guide the eye. The masses of particles in
the Fibonacci chain are mα = 1.9 and mβ = 1.0. The total bandwidth Wn is normalized by the
maximum eigenfrequency.

We calculated the heat current and the local temperature by numerical integration of (5)
and (8), respectively. As the system size grows larger, and as the mass ratio mα/mβ becomes
further from unity, the integrands of (5) and (8) vary more rapidly; hence we should use finer
intervals in the numerical integration. For all the following data on J and {Ti}, we checked
that decreasing the intervals of integration by a factor of 5 did not make significant changes to
the results.

From the numerical calculation, we found that the total energy current J decreases with
oscillation as the generation number n increases (see figure 1). The decrease of J for generation
n shows power law behaviour J ∼ n−a ; the exponent is a ∼ 1 for sufficiently large mα (e.g.,
a = 1.03 when mα = 3.0). This result indicates that it is appropriate to discuss the heat current
in terms of the generation number n rather than the system size N . We note that the system
size dependence J ∼ n−a ∼ (ln N)−a is remarkably different from the behaviour J ∼ N−b

of periodic or disordered systems.
In order to discuss the contribution of eigenstates of the chain to the total heat current we

calculate, as was done in [12], the cumulative heat current:

Jc(ω) = 
T
∫ ω

0

dω′

π

2γ 2ω′2

|det Y |2 . (12)

The cumulative heat current Jc(ω) is a monotonically increasing function; the increment of
Jc(ω) in a certain ω-region is the contribution of the eigenstates of the ω-region to the total
heat current. For the Fibonacci chain, as shown in figure 2, Jc(ω) consists of many slopes
and plateaus. Each slope consists of slopes and plateaus in a nested fashion, and the nested
structure becomes finer as the generation number grows; i.e., Jc(ω) seems to become the devil’s
staircase in the infinite-generation limit.

The devil’s-staircase-like structure of Jc(ω) is very similar to the integrated density of
states (IDOS) of the Fibonacci chain (see figure 2). The plateaus of Jc(ω) approximately
coincide with the plateaus of the IDOS; i.e., the frequencies corresponding to the eigenstates
make a major contribution to the heat current.

Figure 2 shows that dominant contribution to J comes from the low-frequency eigenstates,
especially for high generation number. We may attribute the high conductivity in the low-
frequency region to the extended eigenstates. The high-frequency eigenstates are critical, i.e.,
they show a power law decay, while the low-frequency eigenstates are extended like eigenstates
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Figure 2. Full curves indicate the cumulative heat currents Jc(ω). The lower two full curves
are Jc(ω) of 10th-generation (upper curve) and 20th-generation (lower curve) Fibonacci chains
with mα = 1.9 and mβ = 1.0. The uppermost smooth full curve is Jc(ω) for a periodic chain
with identical particles; the mass of particles is the average of those of the particles in the above
two Fibonacci chains. The dashed curve is the IDOS of the 15th-generation Fibonacci chain.
Although there are eigenstates in the high-frequency region (up to ω ∼ 1.7), we plot only low- and
medium-frequency regions because high-frequency states contribute little to Jc(ω).

in periodic chains. Correspondingly, the low-frequency eigenstates may transport the energy
ballistically. The ballistic transport can be seen from the similarity between Jc(ω) for the
Fibonacci chain and Jc(ω) for a periodic chain in a low-frequency region (see figure 2). We
should note that the low-frequency region in which the eigenstates are extended becomes
narrower in the limit of infinite system size. This is because all the eigenstates become critical
in the limit of infinite system size, since the continuous part of the spectrum of the Fibonacci
chain narrows and becomes singular continuous even in the low-frequency region [7]. As a
consequence, we can conclude that the heat current, unlike that of the periodic chain, vanishes
when N → ∞.

The similarity between Jc(ω) and the IDOS indicates that the generation number
dependence of J is explained by the spectral properties of the Fibonacci chain. Now, we
consider the nth-generation rational approximant, which is a periodic chain whose unit cell is
the nth-generation Fibonacci chain. We denote by σn the ω2-spectrum of the nth-generation
rational approximant; σn is given as {ω2; |tr Mn| � 2}. The spectrum σn consists of Fn bands;
as n increases, the bands are fragmented into pieces and total bandwidth Wn decreases. We
note that Wn obeys a power law Wn ∼ n−a′

and a′ ∼ 1 [7]. Since the frequency region
corresponding to the band gap does not contribute to the heat current, we conclude that the
decay of J with increasing n is similar to the decay of Wn ; thus J obeys a power law as Wn

does, as shown in figure 1.
Unlike our result, that of Bafaluy and Rubı́ [13] shows that the heat current on a

homogeneous harmonic chain is proportional to the total bandwidth of the ω-spectrum (instead
of the ω2-spectrum) of the chain. The difference in the bandwidth dependence of the heat
current is caused not only by the difference in mass distribution of the chains but also by the
choice of the heat baths. Bafaluy and Rubı́ did not use a white-noise heat bath; they studied a
stationary state achieved from an initial state in which both the left and right half-infinite parts
of the chain are in equilibrium at temperatures TL and TR, respectively. As shown by Dhar [4],
the system size dependence of the heat current on disordered harmonic chains sensitively
depends on the choice of the heat baths. We shall report on the system size dependence of the
heat current for other heat baths in a future publication.
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Figure 3. The upper full trace is local temperature {Ti } on the 15th-generation Fibonacci chain
with mα = 1.9 and mβ = 1.0. Left and right heat baths have temperature TL = 2.0 and TR = 1.0,
respectively. Triangles indicate the Fibonacci sites: upward- and downward-pointing triangles
correspond to the Fj th and (F15 − Fj )th sites, respectively. The lower full trace is mi x2

i (ω) for a
critical eigenstate corresponding to the maximum eigenfrequency.

Before showing the local temperature {Ti}, we define Fibonacci sites and Fibonacci blocks,
which seem important for discussing the behaviour of {Ti }. On the nth-generation Fibonacci
chain, which consists of Fn sites, the Fibonacci site is the Fj th site with j = 1, 2, . . . , n − 1
from left or right ends; i.e., the Fibonacci sites are numbered Fj or Fn − Fj . We call a region
between neighbouring Fibonacci sites a Fibonacci block. Since Fj ∼ τ j , Fibonacci sites are
sparsely distributed around the centre of the chain and densely near the ends. If the chain
length is normalized to unity, the Fibonacci sites are approximately at τ− j and 1 − τ− j . Thus,
as the generation number increases, the Fibonacci site distribution becomes denser near the
ends but is invariant around the centre of the chain. Correspondingly, the size of the Fibonacci
blocks around the centre of the chain stays constant with increasing generation number.

Now we plot {Ti} in figure 3 where we also show the Fibonacci sites. We can see that the lo-
cal temperature oscillates strongly along the chain. The oscillation in the local temperature pro-
file shows that the heat current may flow from a lower-temperature site to a higher-temperature
site. (The heat current is same everywhere on the chain, since we are considering the steady
state in which the local energy of every site is constant.) Such a rather unnatural property is
common among harmonic chains. For example, near the lower-temperature heat bath of the
harmonic chain of equal-mass particles, there is a region in which the heat current flows from
a lower-temperature site to a higher-temperature site since in that region the local temperature
increases on approaching the low-temperature heat bath [1]. The disordered harmonic chains
also show a strong oscillation in the local temperature before averaging over some realizations
of the disorder. We may say that the Fourier law does not hold locally on these chains.

Figure 3 shows that {Ti} changes discretely almost everywhere; however, most of the
significant leaps are located at Fibonacci sites. Furthermore, the interior of each Fibonacci
block has a bilaterally symmetric temperature distribution. The symmetry is a nontrivial result
since the whole system with heat baths at both ends is not bilaterally symmetric. We note that
some of the Fibonacci blocks have a symmetric mass sequence, but not all the blocks do.

We have not yet elucidated the mechanism producing the local temperature profile which
we observed. However, we note that the mass-weighted amplitudes of critical eigenstates also
have leaps at the Fibonacci sites, as shown in figure 3. Such behaviour is similar to that of
the {Ti}; thus we may assume that this characteristic of the {Ti} is partly due to the critical
eigenstates. We may not simply attribute the origin of the symmetry of {Ti} in Fibonacci blocks
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Figure 4. The local temperature on the Fibonacci chain of generation (a) n = 12 (number of
particles N = 233), (b) n = 13 (N = 377), (c) n = 14 (N = 610), and (d) n = 15 (N = 987). The
Fibonacci chains consist of particles of mα = 1.9 and mβ = 1.0. Each chain length is normalized
to unity. Left and right heat baths have temperature TL = 2.0 and TR = 1.0, respectively.

to the properties of a single critical state, since we have not observed such symmetry in any
critical states. We believe that the relation between {Ti} and the critical eigenstates could be
clarified by expressing Ti in terms of the amplitudes of the eigenstates [5], but this task is left
for future research.

Another major characteristic of {Ti} is an oscillatory behaviour with increasing generation
number. We plot in figure 4 the local temperature on the Fibonacci chains of generations
n = 12, 13, 14 and 15. There is an obvious similarity between the {Ti} for n = 12 and
14, and between the {Ti} for n = 13 and 15; i.e., {Ti} oscillates periodically in generation
with period two. We checked that the similarity in {Ti} of odd- and even-generation chains is
maintained throughout the generations from n = 6 to 15, which correspond to system sizes
from N = 13 to 987. We may check the oscillation quantitatively by comparing the average
local temperature of, e.g., the centre Fibonacci block of each chain. The average temperature
of the centre Fibonacci block is distributed between 1.558 and 1.589 for odd-generation chains
(from n = 7 to 15) and between 1.645 and 1.706 for even-generation chains (from n = 6
to 14). The periodic oscillation implies that the local temperature distribution {Ti} does not
converge to a definite distribution even in the limit of infinite generation number, i.e., in the
thermodynamic limit.

In summary, we have shown that the Fourier law is invalid for the harmonic Fibonacci
chain, as for periodic or disordered harmonic chains. The heat current J depends on the system
size N as J ∼ (ln N)−1; the anomalous dependence is remarkably different from that in the
periodic or disordered case. The N-dependence of J is very similar to the N-dependence
of the total bandwidth of the frequency spectrum. Such similarity is the consequence of the
fact that only the lattice vibration with frequency within the frequency bands can transport
the heat over the length of the chain. We have also obtained the local temperature. The local
temperature {Ti} strongly oscillates and does not show monotonic change. Both {Ti} and the
mass-weighted amplitude of the critical eigenstates exhibit significant leaps at Fibonacci sites;
this fact indicates the close relation between {Ti} and the eigenstates. We have concluded that
{Ti} does not converge to a definite form in the limit of infinite system size, since {Ti} exhibits
two different forms depending on the parity of the generation.
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